概述
按照官网文档,可以按照下面的命令进行安装。
1
2
3
4
5
6
7
|
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.repo | sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
yum-config-manager --enable libnvidia-container-experimental
# 验证
nvidia-docker run -–rm nvidia/cuda nvidia-smi
|
Kubernetes GPU插件安装
https://github.com/NVIDIA/k8s-device-plugin#deployment-via-helm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
apiVersion: v1
kind: Pod
metadata:
name: gpu-pod
spec:
containers:
- name: cuda-container
image: nvcr.io/nvidia/cuda:9.0-devel
resources:
limits:
nvidia.com/gpu: 2 # requesting 2 GPUs
- name: digits-container
image: nvcr.io/nvidia/digits:20.12-tensorflow-py3
resources:
limits:
nvidia.com/gpu: 2 # requesting 2 GPUs
---
apiVersion: v1
kind: Pod
metadata:
name: cuda-vector-add
spec:
restartPolicy: OnFailure
containers:
- name: cuda-vector-add
# https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/images/nvidia-cuda/Dockerfile
image: "harbor.dev-prev.com/middleware/cuda-vector-add:v0.1"
resources:
limits:
nvidia.com/gpu: 1 # requesting 1 GPU
|
https://github.com/NVIDIA/k8s-device-plugin#deployment-via-helm
1
2
3
4
|
repotrack nvidia-docker2
repotrack slirp4netns fuse-overlayfs container-selinux
tar zcvf nv.tar.gz nv-docker2
docker run --rm --gpus all cuda-vector-add:v0.1 nvidia-smi
|
下面是调度器的配置文件的写法。
1
2
3
4
5
6
7
8
|
scheduler:
extra_args:
address: 0.0.0.0
kubeconfig: /etc/kubernetes/ssl/kubecfg-kube-scheduler.yaml
leader-elect: 'true'
policy-config-file: /etc/kubernetes/ssl/scheduler-policy-config.json
profiling: 'false'
v: '2'
|
警告
本文最后更新于 2017年2月1日,文中内容可能已过时,请谨慎参考。